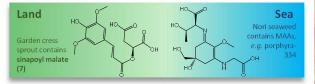


Investigating the synergy in the battle against UV between sea and plant-based extracts for bio-inspired cosmetics applications

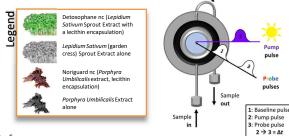

Holt, Emily¹; Poigny, Stéphane^{2*}; Henes, Bernhard²; Stavros, Vasilios^{1**}

¹ Department of Chemistry, University of Warwick, Coventry, United Kingdom **v.stavros@warwick.ac.uk Poster ID 558

² Mibelle Group Biochemistry, Buchs, Switzerland *stephane.poigny@mibellegroup.com

Introduction

- Active ingredients inspired by nature are increasingly being incorporated into cosmetics and beauty products.
- Molecules from nature, such as Mycosporine-like Amino Acids (MAAs) from aquatic environments and Sinapoyl Malate (SM) from the plant kingdom, have individually been shown to have beneficial cosmetic properties, including anti-ageing, antioxidant and UV absorption. (1-5)
- However, it is unknown whether combining ingredients from different natural sources can work together to enhance their favourable qualities with a synergistic effect.
- Identifying synergies would increase the power of an ingredient. This would benefit both formulators and customers alike. (6)

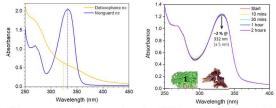


Materials & Methods

- The specialism of the team at Warwick is in ultrafast Transient Electronic Absorption Spectroscopy (TEAS, pictured).
- TEAS tracks energy flow in molecules following UV radiation, from the instant that it is absorbed, up to around 2 nanoseconds (ns, 10⁻⁹ s). This information can inform on the long-term photostability. This has been done very successfully for UV filters found in sunscreens. (8)

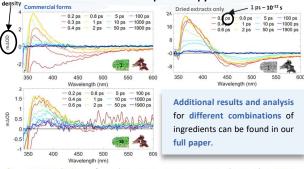
- TEAS uses femtosecond (fs, 10⁻¹⁵ s) laser pulses to do this. A more detailed description of the working principles can be found in our full paper.
- In addition to TEAS, UV-visible spectroscopy was also used to track photostability during solar irradiation.

CONGRESS, LONDON


References

32ND IFSCO

- Abiola TT, Whittock AL, Stavros VG. Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy. Molecules. 2020;25(17):3945
 Chen C, Sinanic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Acing. Oxidative Medicine and Cellular Longevity. 2016;2016;3571614
- Chen C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Medicine and Cellular Longevity. 2016;2016:3571614.
 Sen S, Mallick N. Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Research. 2021;58:102425
- Sen S, Mallick N. Mycosponne-like amino acids: Algal metabolices shaping the safety and sustainability profiles or commercial subscreens. Algal Research. 2021;58:102
 Yarkent Ç, Gürlek C, Oncel SS. Potential of microalgal compounds in trending natural cosmetics: A review. Sustainable Chemistry and Pharmacy. 2020;17:100304.
- Miyamoto KT, Komatsu M, Ikeda H. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Applied and Environmental Microbiology. 2014;80(16):5028-36.
- 6. Mota MD, Costa RYS, Guedes AaS, Silva LCRCe, Chinalia FA. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. Journal of Photochemistry and Photobiology B: Biology. 2019;201:111639.
- Abiola TT, Auckloo N, Woolley JM, Corre C, Poigny S, Stavros VG. Unravelling the Photoprotection Properties of Garden Cress Sprout Extract. Molecules. 2021 Dec 16;26(24):7631.
 Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. International Reviews in Physical Chemistry. 2019;38(2):243-285.


Results & Discussion

The UV-visible spectra (left) shows the absorption profiles of the commercial forms. On the right, the two ingredients are combined and irradiated, with only a 2% decrease in absorption over two hours. This was higher photostability than when in isolation (each decreased by 6%) - evidence of a positive synergetic effect...

This was also the case for the dried extracts alone, the photostability improved when the two ingredients were combined. Change

Ultrafast Spectroscopy

- Encapsulation of garden cress sprout extract shows the same spectral features as sinapoyl malate in a non-polar environment.
- The dominant spectral features varied, depending on the proportion of ingredients in the mixture.

Conclusions

- The combination of ingredients from both the land and the sea is highly innovative and unique.
- The irradiation results show very promising evidence of a synergy between the two aspects of nature, as there was an excellent improvement in photostability when the two were combined. Together, they could also create a broad-spectrum UV boosting effect.
- The excited-state lifetime of the extract is extremely short (a few ps), therefore it can rapidly re-absorb UV and enhance boosting effect.
- Future work will study the extracts in more detail, e.g. in vitro SPF
- The scope of this study has been widened to investigate whether nature-based ingredients can be used as a shield to protect traditional UV filters, which are known to be photolabile.

Acknowledgements

The authors would like to thank Dr Fred Zülli for supporting this project and offering valuable insights and expertise.

INNOV