

Study of cosmetic applications with unmodified cellulose fiber as novel gel type ingredient

Doi Moeko¹, Kubo Junichi², Goto Takehiro¹, Kitanouma Maki¹, <u>Ota Atsuko¹, Nishioka Haruka¹</u> ¹DAITO KASEI KOGYO CO., LTD. 1-6-28, Akagawa, Asahi-Ku, Osaka, 535-0005 JAPAN ²RENGO CO., LTD. 3-5-5, Ohhiraki, Fukusima-ku, Osaka, 553-0007 JAPAN

Poster ID 361

🔁 DAITO KASEI

Introduction:

Cellulose fiber is a plant-derived next generation material. It is produced through chemical and mechanical processes from wood, etc. It has a high specific surface area and such characteristics, high strength, high modulus of elasticity despite its light weight. In addition, this material shows biodegradability, biocompatibility, and non-toxicity, namely being environmentally friendly. Recently, microplastic contamination appears as one of the world's environmental main concerns, so cellulose fiber is getting more and more attention as a raw material which is not categorized as a microplastic Conventionally, in order to obtain cellulose fibers (CF) having uniform sized diameters, we must modify cellulose molecules with carboxylic and/or phosphoric groups. However, we have developed the novel process to obtain uncertainteen and the start of the RCF shows excellent transparency in dispersing in water. In addition, we found that the RCF could be dispersed in mixture of water and BG with high concentration (in case of the water dispersion of commercialized modified cellulose fiber, the maximum concentration is around 2%). The purpose of this study is to clarify these physical characteristics, and the various properties when applied in the cosmetics.

> (a) Hole

1-2. Pyrolysis temperature

256 °C

250 rature (°C) Temp

100

40

8

Weight change 60

Materials & Methods:

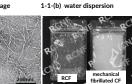
1. Properties of RCF and RCF gel

We analyzed a fiber diameter(1), pyrolysis temperature(2), dispersibility in the water(3) and emulsion(4) of RCF and compared with cellulose fiber which prepared by other methods and other thickener.

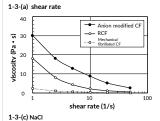
2. Properties of RCF film We examined the potentials of RCF film after drying. Water evaporation(2) was measured with the apparatus modified hygrometer like figure 1a. The trapping effects(3) of RCF film against tobacco smoke were examined

ntofw determining aldehyde compounds (ACs) and benzo(a)pyrene (BaP) in de-ionized water (DIW) diffused with tobacco smoke like figure 1b using fluorescence measurement

313°C

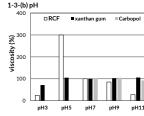

RČF

3. Preparation of gel-type formulations To address a possibility of RCF in cosmetics, we prepared aqueous formulations, sunscreen(1) and eyeliner(2).


Results & Discussion:

1-1. RCF appearance and transparency

1-1-(a) TEM image


1-3. Influence of each parameter on RCF viscosity

□ RCF ■xanthan gum =Carbopol

NaCI 0 5%

NaCI 5%

1-4. Emulsification property

Change added	RCF	Xanthan gum	Carbopol
(Emulsion type)	o/w	failed	o/w
Add 0.5% NaCl	failed	failed	failed
pH 3	failed	failed	failed
pH 5	emulsified	failed	failed
pH 7	emulsified	failed	emulsified
pH 9	emulsified	failed	emulsified
pH 11	emulsified	failed	emulsified

er at 79.76% and squalane at 20%

RCF has excellent thinness, transparency, and rheological properties as a fiber made of pure cellulose without chemical modification, and it has pyrolysis stability similar to that of pulp. In addition, RCF could emulsify oil stable without surfactant.

3-1. SUNSCREEN	

NaCI 0%

150

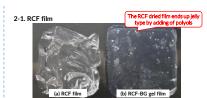
viscosity (%)

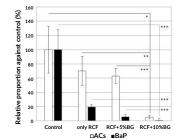
50

0

Ing	redients	RCF	Other cellulose	Xanthan gum	Carbopol
A	De-ionized water	80.75	84.20	85.70	86.40
A	RCF	1.00	-	-	
А	microcrystalline cellulose and cellulose gum		2.00	-	
А	hydroxypropyl methylcellulose stearoxy ether	-	0.15		-
А	xanthan gum			1.00	
А	acrylates/C10-30 alkyl acrylate crosspolymer	-	-	-	0.20
А	AMPD			-	0.10
А		xcellent SPF) 7.95	3.35	3.00	3.00
А	Preservative	ormance 0.30	0.30	0.30	0.30
в	silica treated ultrafine TiO ₂	10.00	10.00	10.00	10.00
	Viscosity (Pa · s)	49.2	92.2	50.7	72.3
	SPE/PA (UVA-PE)	26.99/	22.13/	9.85/	17.38/
	JEI/FA (OVA-FI)	PA++++ (22.05)	PA++++ (17.81)	PA+++ (8.42)	PA+++ (13.99)

CONGRESS, LOND




Figure 1. Methodolog

(Ь)

2-2. Water evaporation through gel-sheets at the initial state

		signifi	significance	
	Water evaporation rate (%/minute)	vs control	vs only RCF	
Control	4.66±0.896	-	-	
only RCF	3.72±0.425	ns	-	
RCF+5%BG	2.98±1.329	ns	ns	
RCF+10%BG	2.42±0.407	*	*	

2-3. Trapping effects of RCF-treated filters on ACs and BaP

The RCF-BG gel film was able to suppress water evaporation and showed excellent trapping effects both for ACs and for BaP compared to the control. We expected that RCF gel film when formed on the skin: suppressing water evaporation from the inside of the skin and acting as a barrier against external stimuli from the

Ingredients		RCF	Xanthan gum
Α	De-ionized water	57.55	58.50
Α	RCF	0.20	
Α	Xanthan gum	-	0.20
Α	BG	1.95	1.00
Α	Preservative	0.30	0.30
В	Carbon black water dispersion	20.00	20.00
В	Emulsion of styrene/acrylates copolymer	20.00	20.00
Visco	Keep excellent flowability ! RCF	356	320
Writi	ing quality Xanthan gum		1923

riting quality of the eye

Sunscreen containing RCF can also be prepared without any restrictions on ingredients, and as evidence of its excellent dispersibility and film forming property, it has a higher SPF than formulations using other thickeners. Eyeliner formulated with RCF, which maintains some viscosity, but its thixotropic properties make it writing quality.

Conclusions:

32ND IFSCC

The novel RCF which is unmodified cellulose fiber will be very lucrative ingredient for cosmetics, especially gel type cosmetics such as skin care and make-up, and as a biodegradable ingredient.