

Bioactivity and Sensory Evaluation of Portuguese essential oils obtained from logging residues and thinnings

<u>Helena Ribeiro</u>¹, Ana Ruas², Angelica Graça¹, Joana Marto¹, Ana Oliveira³, Alexandra Silva³, Madalena Pimentel ^{1,3}, Artur Moura⁵, Ana C Figueiredo^{2,4}

¹ Research Ins tute for Medicines and Pharmaceu cal Sciences (iMed.UL), Faculty of Pharmacy,

Universidade de Lisboa, 1649-003 Lisbon, Portugal, Lisboa, Portugal ² Faculdade de Ciências da Universidade de Lisboa, Departamento de Biologia Vegetal, C2, Campo Grande,

1749-016 Lisboa, Portugal, Lisboa, Portugal ³ Laboratório de Controlo Microbiológico, ADEIM – Faculdade de Farmácia, Av. Forças Armadas 1649-019 Lisboa, Portugal, Lisboa, Portugal

⁴ Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de

Lisboa, BV, DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal, Lisboa, Portugal

⁵ Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal, Lisboa, Portugal

Introduction:

Landscaping of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica forest provide logging residues that can be used to extract essential oils (EOs).

Materials & Methods:

Results & Discussion:

Table 1. Minimum inhibitory concentrations (MICs) of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica essential oils (EOs) against Gram-positive and Gram-negative bacteria and yeast

FOr complete	DPPH	MICs					
EOs samples		S.a	B.s	P.a	E.c	C.a	
Eg_OE_1_G	198 ± 20	125	31	500	16	8	
Eg_OE_2_B	647 ± 6	125	31	500	4	4	
Eg_OE_3_O	152 ± 0	63	15	31	16	31	
Eg_OE_4_E	WA	125	15	500	63	31	
Eg_OE_5_P	WA	63	2	500	4	4	
Eg_OE_6_S	247 ± 25	63	16	500	16	8	
Pp_OE_1_G	55 ± 1	>500	>500	>500	>500	>500	
Pp_OE_2_P	WA	31	16	500	16	63	
Pp_OE_3_S	WA	>500	16	>500	125	125	
Ppi_OE_1_B	196 ± 23	63	8	>500	125	16	
Cj_OE_1_M	23 ± 0	>500	>500	>500	>500	>500	
S a: Stanbylococcus aureus ATCC 6538 B s: Bacillus subtilis ATCC 6633 P a: Pseudomonas aeruginosa ATCC							

9027. E.c: Escherichia coli ATCC 8739. C.a: Candida albicans ATCC 10231

Table 2. Participants responses regarding the characterization of emulsions odor.

Emulsions' Odor	N (%)						
Classification of odors	Cj_OE_	Ppi_OE_	Eg_OE_1	Pp_OE_	Pp_OE_		
	1_M	1_B	_G	1_G	2_P		
1. Very unpleasant	0	9	36	4	5		
2. Unpleasant	22	25	27	41	44		
3. Pleasant and hot odor	15	12	15	10	13		
4. Pleasant and fresh odor	60	53	22	30	27		

Cj_OE_1_M: Cryptomeria japonica. Ppi_OE_1_B: Pinus pinea. Eg_OE_1_G: Eucalyptus globulus. Pp_OE_1_G: Pinus pinaster. Pp_OE_2_P: Pinus pinaster.

The odors from C, japonica and P, pinea EOs emulsions were considered the most pleasant and appreciated by majority of volunteers (Table 2)

The volunteers showed a preference for fresher and citrus smelling EOs emulsions, characterized by α -pinene and limonene presence rather than EOs emulsions with more intense and stronger 1,8-cineole odour [2].

C. japonica EO showed the highest antioxidant activity while E. globulus EO revealed the greatest efficacy against the selected strains, both showing relevant antioxidant activity and promising antimicrobial activity, which can be a key benefit justified by their promising skin health properties (Table 1).

Conclusions:

It is possible to conclude from these results that EO's studied have relevant antioxidant activity and promising antimicrobial activity, which can be a key benefit justified by their promising skin health properties. These natural-based EOs address the demand for sustainable and responsibly sourced odor accepted by consumers.

References:

[1] A. Neves, et al. Flavour and Fragrance Journal, 32 (2017) 392-402. [2] A. Ruas, et al. Molecules, 27 (2022) 3572.

NGRES

Acknowledgements:

Fundação Funded the Ciência Tecnologia, CESAM by para а e to UIDP/50017/2020+UIDB/50017/2020+LA/P/009/2020, UID UIDP/04138/2020 to iMed.ULisboa, CEECINST/00145/2018 to J.Marto. UIDB/04138/2020

Poster ID