

Givaudan

Human by nature

# Skin cellular youth reprogramming as an innovative anti-ageing strategy for cosmetic ingredient

467

Boira, Cloé<sup>1</sup>; Meunier, Marie<sup>1</sup>; Scandolera, Amandine<sup>1</sup>; Bracq Marine<sup>1</sup>; Sandré Jérôme<sup>2</sup>; Maramaldi, Giada<sup>1</sup>; Reynaud, Romain<sup>1</sup> <sup>1</sup>Givaudan Active Beauty, France; <sup>2</sup>Polyclinique Courlancy, France

Norma

(NHDFs)

Serico

## Introduction:

Several biological mechanisms are affected by the natural ageing of the body, the large majority of them starting from a modification of gene control and ending up in visible skin ageing signs [1]. Pluripotent stem cells present an amazing vitality and can turn into different tissues to replace senescent cells, but their proliferation capacity starts decreasing throughout the natural ageing of cells [2]. As they age, stem cells progressively lose their DNA repair capacities, their ability to produce new progenitors and differentiated effector cells is impacted [3]. Tissue regenerative potential reduces, associated to an accumulation of non-functional cells throughout life [4].

Stem cells present an important role in different skin lavers. The epidermis is the first part of the body to be exposed to external aggressors and needs a constant renewal due to its high turnover [5]. Stem cells are also present into the dermal tissue and participate in the homeostasis maintenance and regeneration of injured skin [6]. By losing their pluripotency and functionality, skin cells show a slowing down of cells regeneration and repair function leading to a progressive apparition of visible ageing signs such as wrinkles or eye-bags [7].

We hypothesized that reactivating cell memory to bring them back closer to a pluripotency state would be a very effective and innovative strategy for cells reiuvenation.

In Tanzania, a very typical plant of the miombo forest environment is Terminalia sericea, a beautiful, majestic tree with silvery leaves, also known as a silver tree. In the bark of the roots of this tree, the plant accumulates a specific pentacyclic terpenoid: Sericoside, Sericoside is already known and largely used for its medicinal properties [8].

In this study, we evaluated the capacities of Sericoside to reprogram cells to a younger stage to define if it could be an efficient candidate to reactivate cell memory for a rejuvenation process.

# **Results & Discussion:**

#### 1. Genes modulation and cell reprogrammation

| DNA repair                                                | GADD45A +29%* ; OGG1 +56%** ; XPA +26%*** ; XPC +51%* |
|-----------------------------------------------------------|-------------------------------------------------------|
| Pluripotency TF                                           | NANOG +36%* ; POU5F1 +51%#                            |
| RA receptor                                               | CRABP2 +47%*                                          |
| Signal transduction                                       | CAV1 +286%**                                          |
| Stem cell maintenance                                     | SOX2 +200%"                                           |
| Transcription factor                                      | MYC +39%*                                             |
| Student t-test with #p<0.1; *p<0.05; **p<0.01; ***p<0.001 |                                                       |

#### 2. Improvement of senescent cells proliferation



Sericoside 2-times increased senescent cells' proliferation.

Rejuvenation of cells presenting a doubling time equivalent to a 22 years old donor

# Materials & Methods:

#### In vitro studies

| Transcriptomic study     | Cell proliferation                              |
|--------------------------|-------------------------------------------------|
| Human Dermal Fibroblasts | - NHDFs<br>- Senescence chemically induced with |
| side 0.02% for 24h       | H2O2                                            |

 RT-aPCR with specific plates designed to study cell rejuvenation

- Sericoside 0.02% for 72h

- DermaTOP-Blue method: skin

- Sa parameter = skin texture.

Rz average & Ra maximum = 3D skin

profilometry

roughness

Comparison with untreated senescent NHDFs and with untreated young NHDFs (22 yo)

### **Clinical evaluation**

- Placebo controlled single blind clinical studv

40 volunteers - 2 groups (aged 35-55) - Twice daily application of an emulsion

containing 0.5% Sericoside versus placebo over 1 month.

# - Cutometer® MPA 580

- R9 parameter = skin fatigue

#### - Chromameter® - R2 parameter = skin firmness

- L parameter : 0=black ; 100=white
- a parameter = green-red
- b parameter = blue-yellow



Sericoside increased skin elasticity and decreased skin fatigue after 30 days. It also improved skin texture by decreasing skin roughness after 30 days

#### 4. Eye contour benefit



Sericoside reduces dark circles and eye bags volume after 30 days

### Conclusions:

# Acknowledgements:

Thank you to all Givaudan Active Beauty teams involved in this project.

# **References:**

[1]D. Glass et al., "Gene expression changes with age in skin, adipose tissue, blood and brain," Genome Biol, vol. 14, no. 7, p. R75, 2013. [2]C. C. Zouboulis, J. Adjaye, H. Akamatsu, G. Moe-Behrens, and C. Niemann, "Human skin stem cells and the ageing process," Experimental Gerontology, vol. 43, no. 11, pp. 986–997, Nov. 2008. [3]N. E. Sharpless and R. A. DePinho, "How stem cells age and why this makes us grow old," Natural Reviews Molecular Cell Biology, vol. 48, pp. 703–713, 2007. [4]I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, and T. A. Rando, "Rejuvenation of gaed progenitor cells by exposure to a young systemic environment," Nature, vol. 433, no. 7027, pp. 760–764, Feb. 2005. [5]K. R. Mesa et al., "Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation," Cell Stem Cell, vol. 23, no. 5, pp. 637–636, e4, Nov. 2018. [6]F. G. Chen et al., "Clonal analysis of nestin-"""". vimentini multipotent jihrobiast isolated from human dernis," Journal of Cell Science, vol. 120, no. 16, pp. 2875–2883, Aug. 2007. [7]J. Varani et al., "Reduced Fibrobiast Interaction with Intact Collagen as a Mechanism for Depressed Collagen Synthesis in Photodamaged Skin," Journal of Investigative Dermatology, vol. 122, no. 6, pp. 1471–1479, Jun. 2004. [8]N. I. Mongalo, L. J. McGaw, T. V. Segapelo, J. F. Finnie, and J. Van Staden, "Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. ex DC. (Combretaceae) - A review," Journal of Ethnopharmacology, vol. 194, pp. 789-802, Dec. 2016.