

Using quality by design to optimize hydrogel semi-solid sheet masks for enhanced skin barrier: in vitro and in vivo studies

Poster ID 404

A Graça¹, P Pinto^{1,2}; S Raposo^{1,3}, H M Ribeiro¹, J Marto¹ 1 Research Institute for Medicine (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal 2 PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A - 1750-182, Lisboa, Portugal. 3 Laboratório Edol – Produtos Farmacêuticos, S.A., Linda-a-Velha, Portugal

⊠e-mail: angelicagraca@campus.ul.pt

Introduction:

The coronavirus SARS-CoV-2 which is responsible for the COVID-19 pandemic has led to the general use of personal protective equipment (PPE) [1]. The prolonged and continuous use of PPEs exerts sustained pressure, tension forces, friction, and increases the local humidity and temperature, which may originate skin lesions [2]. A possible way to prevent such lesions is to incorporate a "barrier" between the skin and the PPE. This work aimed to develop and test the efficacy of a low-cost and easy to produce hydrogel sheet-mask to be placed between the PPE mask and the facial area where pressure is more concentrated. This polymeric film-forming system might increase Health Care Professionals skin health and personal wellbeing without compromising the protective function of PPEs.

Materials & Methods:

The polymeric film-forming system is a gelatin-based hydrogel, containing

biodegradable and eco-friendly ingredients. namely polyvinyl alcohol, silica, betaine and glycerin to enhance physical properties of the hydrogel sheet-mask

1st Step – DOE and Risk Assessment

- Quality Target Product Profile (QTPP) Critical Quality Attributes (CQA) definition
- Formula optimization using MODDE® Software: Two-level Fractional Factorial Design Resolution V+

2nd Step – *In vitro* Characterization

- ✓ Gelation Temperature
- / Adhesiveness
- ✓ Tribology Lubricant Properties
- Rheometer (Malvern Instruments, Malvern, UK)
- Geometries Used: Plate–plate geometry
- Three-ball-on-plate tribometer geometry

3rd Step - In vivo Studies

Biometric Parameters evaluated:

- Skin surface hydration Corneometer® (Courage & Khazaka+, Germany)
- Facial temperature Measurement- FLIR® (FLIR Systems, Danderyd, Sweden)

Conclusions:

The resilient physical properties of the developed hydrogel sheet-mask and the attenuation of the physiological alterations in the facial area during its use are good indicators that this polymeric film-forming system can prevent skin lesions caused by the prolonged and continuous use of PPE.

References:

[1] Zhang B, Zhai R, Ma L.. J Eur Acad Dermatology Venereol. 2020;34(9):e434-5. [2] Graca A. Martins AM. Ribeiro HM. Marto JM., J Dermatol, 2022:(April):1-13

Results & Discussion:

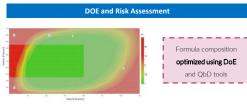


Figure 1. Plot evidence the Design Space for hydrogel sheet-mask

Hedrond Chart Mark

In vitro Characterization

Table 2- Compression test and respective values of elasticity and adhesiveness measurements (mean±SD, n=3).

Trydroger Sheet Wask	0.01 1 0.00	0.24 ± 0.00	
Gelatin Film	0.54 ± 0.06	0.11 ± 0.03	
Hydrogel sheet-mask pre	esents a higher	and complete elastic	1
recovery and more adhesiveness than a film with gelatin alone			

Elasticity (mm) Adhesiveness (N)

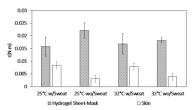


Figure 2. Friction of hydrogel sheet-mask and pig skin (mean±SD, n=3).

Friction values of the hydrogel sheet-mask comparable to skin were stresses over an extended area and avoid misplacement of the mask

In vivo Studies

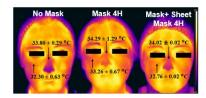
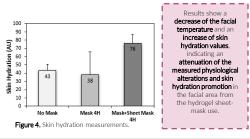



Figure 3. Infrared images of facial skin temperature distributions associated with the use of a FFP2.

Acknowledgements:

Funded by the Fundação para a Ciência e Tecnologia, Portugal (UIDB/04138/2020 and UIDP/04138/2020 to iMed.ULisboa, CEECINST/00145/2018 to J.Marto and fellowship 2020,10138.BD to A. Graca).