

Seppic

Reformulation of Hair Conditioner to Improve Sustainability and Usability with the Help of Rheology

197

<u>ROSO Alicia¹</u>; LIMING Sun²; CUQ-ARNAUD Elodie¹; GUICHARD Charlotte¹; LAUBÉ Florian¹; PEREZ Carla²

¹ Seppic Research & Innovation, 127 chemin de la poudrerie, BP 90128, 81105 Castres, France ; ¹ Customer Technical Service Center, Seppic Shanghai Chemical Specialities Co., China.

² LIMING Sun, Seppic Shanghai Chemical Specialities Co., 819 West Nanjing Rd, Room 1508 Zhongchuang Building, Shanghai 200041, China, +86 (21) 64660149, grace.sun@airliquide.com

 Looking ahead to industrial production and big volumes of hair conditioners, promoting cold manufacturing processes represent a substantial opportunity to reduce carbon dioxide emission.

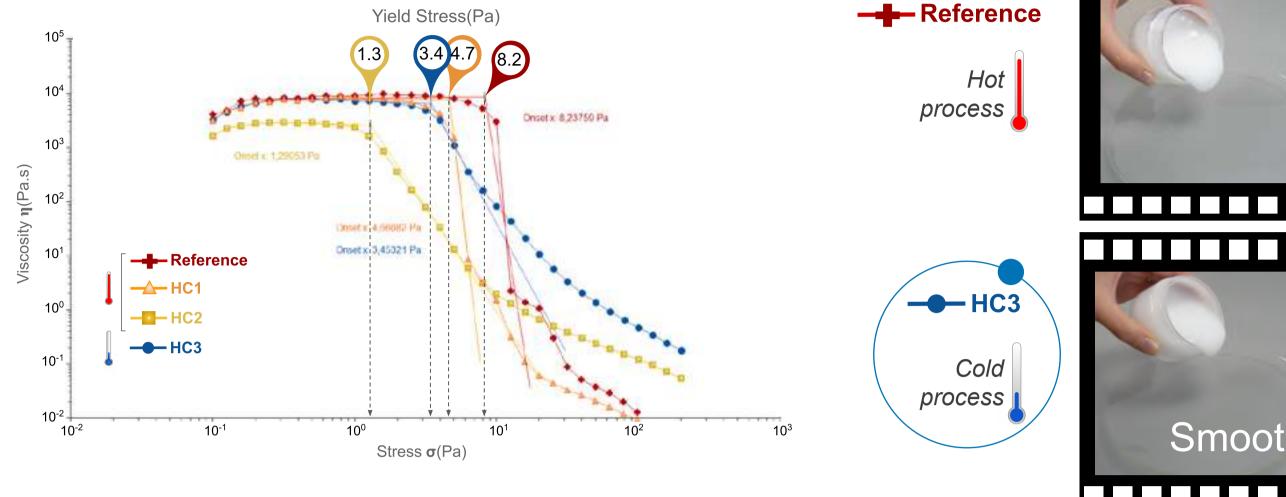
A company


Air Liquide

Results & Discussion

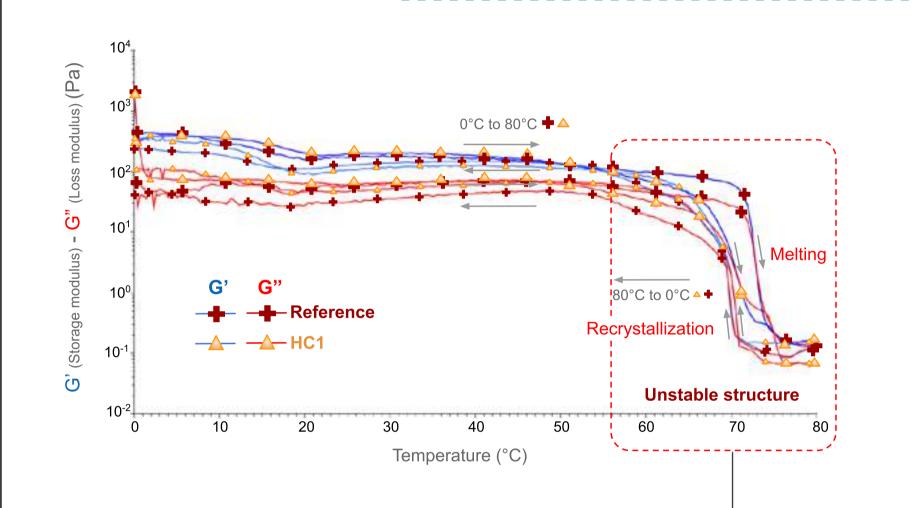
Impact of reformulation on the rheology profile

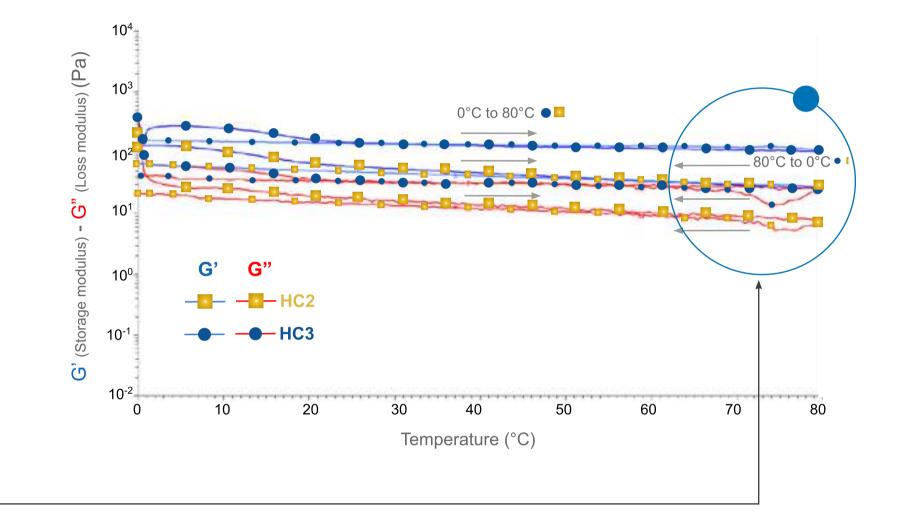
Similar shearthinning profile (rate index moving from 0.34 to 0.4 for HC3) with no thixotropy of the cold-processed formula (slight thixotropy for Reference).


Decreasing yield stress in line with a smoother flowing, despite higher viscosity than Reference.

- Conventional hair conditioners, containing waxy components such as fatty alcohols and cationic agents, require hot manufacturing [1, 2]. Despite its effectiveness, some constraints were reported: change in consistency over time [3], viscosity variations after manufacturing [4] that can finally disturb the distribution outside the packaging during use, especially from spray pumps, and affect the formulation spreadability on hair.
- The purpose of this work was to reformulate a hotprocessed hair conditioner in a cold-processed formulation while maintaining its stability, similar textural and sensory properties, and improving its usability.

Materials & Methods


- Optimization of hair conditioner formulation (DHR2 from TA Instruments; Aluminum cone 40mm/2°)
- Starting from the Reference, removal one by one waxy components and replacing their association liquid thickening-stabilizing-conditioning polymer by (Acrylamidopropyltrimonium Chloride/Acrylates Copolymer & Isohexadecane & Coceth-7), looking for the optimized dosage and a cold manufacturing process.



Characterization of ela		Reference	HC3	
7 days after	Frequency sweep	G' (Pa)	59	51
manufacturing		G'/G	4.5	5.1
After 1 month of storage	Frequency sweep	G' (Pa)	242	47
in cycles oven -5/40°C		G'/G	3.5	2.2

Expected to solve distribution issues from pump packaging while maintaining easy spreading on hair.

- Elastic structure demonstrated for all the formulas. Similar level of structure of cold-processed HC3 and the Reference.
- No evolution of the structure after storage in freeze-thaw conditions with HC3, contrary to the Reference (large increase of G' value).
- Expected to solve distribution issues and reported texture evolution during ageing.

Due to fatty alcolhol removal, no sensitivity to temperature variations of HC2 and cold-processed HC3.

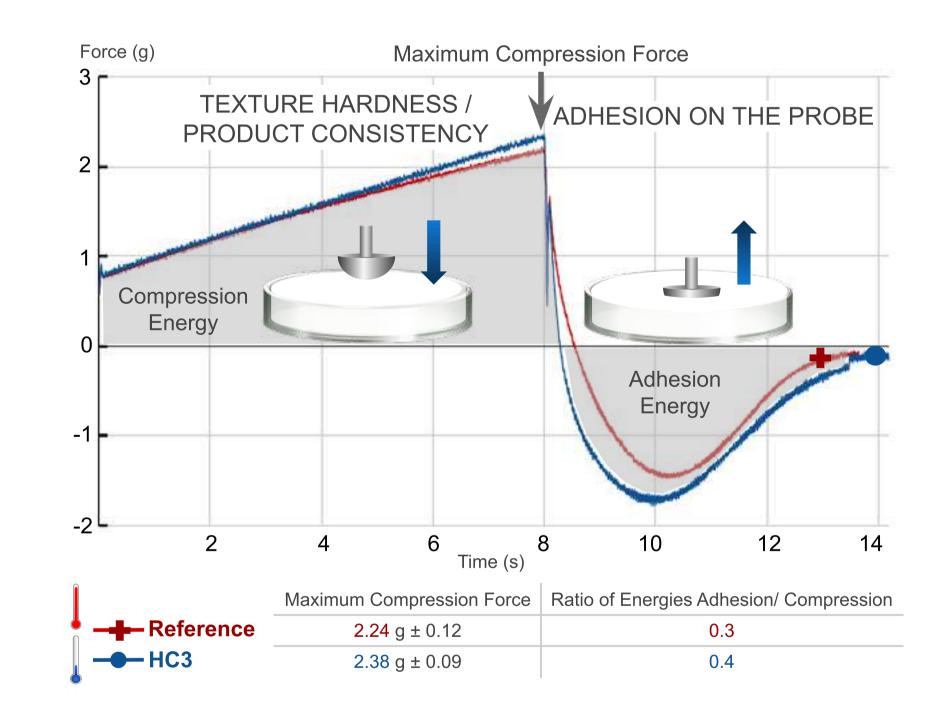
Manufacturing process	0°08	0°08	● 80°C	RT	
INCI name / % (w/w)	Reference	HC1	HC2	I HC3	
Water	90.5	90.5	90.5	90.5	
Acrylamidopropyltrimonium Chloride/Acrylates Copolymer & Isohexadecane & Coceth-7	-	1.5	3.0	3.5	
Steartrimonium Chloride & Water & Isopropyl alcohol (25% Active Matter)	3.0	2.0	3.0	3.0	
Cetearyl Alcohol	3.0	2.0	-	-	
Steareth-20	0.5	0.5	0.5	-	
Glycerin	2.0	2.0	2.0	2.0	
Preservative	1.0	1.0	1.0	1.0	
рН	≈ 5.3	≈ 5	≈ 5	≈ 5	
Brookfield viscosity 1 month after manufacturing (mPa.s, Spindle 4; Speed 6)	≈ 8,100	≈ 14,500	≈ 12,500	≈ 13,500	
Stability at RT & 45°C	Stable > 3 months at RT and 1 month at 45°C				

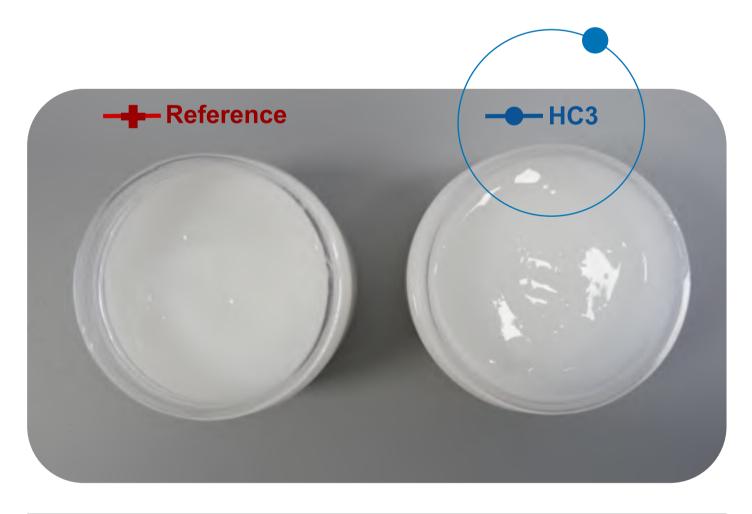
• Rheology analysis

(DHR2 from TA Instruments; Aluminum cone 40mm/2°)

- Flowing experiments at $20^{\circ}C \rightarrow$ Global flowing profile; Rate index (Herschel-Bulkley analysis); Yield stress (steady state flow protocol; Onset mode).

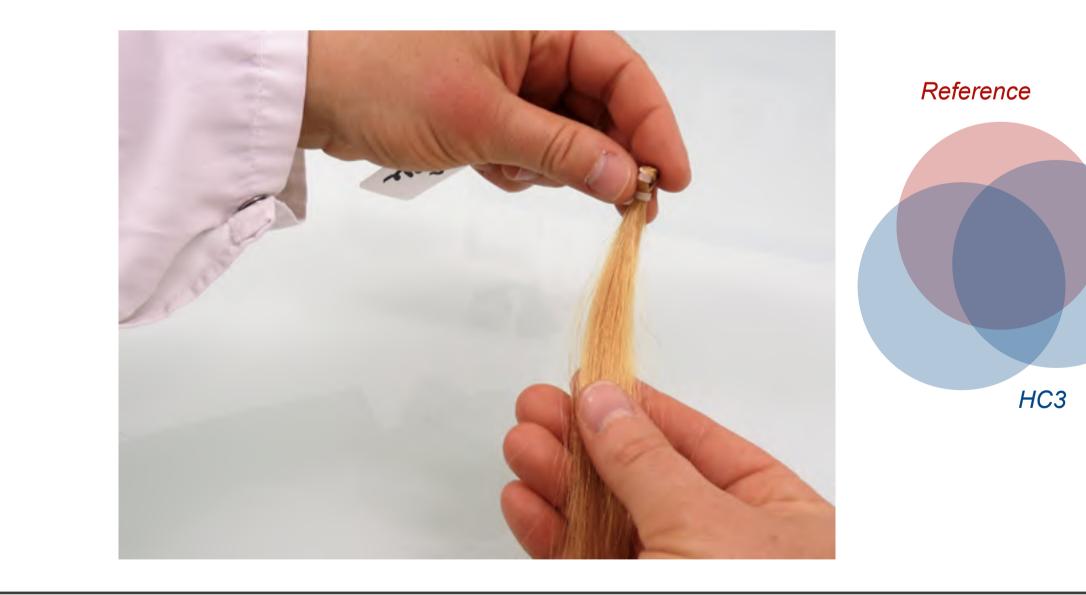
- Oscillatory experiments: frequency sweep at 20°C (0.1 to 100 rad/s); temperature sweep 0°C-80°C (frequency 1Hz/ anti-evaporation cap) \rightarrow Viscoelasticity by following evolution of storage modulus (G') and mean G'/G" ratio.


• Texture analysis


(TA XT- PLUS from Stable Micro System; hemispheric probe Ø 50mm)

- Standard cycle protocol at 20°C up to a depth of 4 mm

Cold-processed formulation with expected good stability from $0^{\circ}C$ to $80^{\circ}C \rightarrow Great$ safety of use for the whole supply chain.


• Texture profile of cold-processed formula ~ Reference

Similar visual texture.

• Sensory profile of cold-processed formula ~ Reference

- Similar effect on hair tresses, at 98.93%.
- Combing
- Shine
- Volume
- Sliding

 $(5 \text{ replicates}) \rightarrow \text{Maximum force and compression energy}$ as indicators of the product firmness; ratio Adhesion energy/ Compression energy as representative of behavior during the product pick-up [5].

Sensory evaluation

(Bleached caucasian hair tresses; Level II)

- Application of hair conditioner on wet hair (0.4g of product/ tress) after a standard pre-washing + 5 minutes pause before rinsing. Tresses dried at room temperature for 24 hours with 45% Relative Humidity.

- Triangular sensory random test with an expert panel specifically dedicated to hair care (10 panelists, trained since 2017; Statistical analysis using Tastel® software) \rightarrow Evaluation of ease of combing, shine, volume, sliding effect, residual oily sensation, natural feeling.

Residual feeling

Very light texture of HC3 with quick break effect during application on the tresses, compared to the body given by the reference.

CONCLUSION

- Rheology helped to better understand the effects of the substitution of the waxy components and support the optimization of a cold-processed formula using a liquid thickening-conditioning polymer.
- Cold-processed hair conditioner showed similar effects on hair tresses than the reference while enabling to reduce carbon emissions and improved usability (smoother flowing; stable structure up to 80°C and after freeze-thaw cycles).
- Cold manufacturing process reduced energy consumption by 95% compared to the Reference and divided the production time by 3, on the basis of a 5 Kg pilot batch.

□ References

- 1. Bhushan B. (2010). Biophysics of human hair: structural, nanomechanical, and nanotribological studies. Conditioner: Constitution and Main Functions, 15-16 Springer Science & Business Media.
- 2. Ajayi O., Davies A., & Amin S. (2021). Impact of Processing Conditions on Rheology, Tribology and Wet Lubrication Performance of a Novel Amino Lipid Hair Conditioner. Cosmetics, 8(3), 77.
- 3. Agredo P., Rave M. C., Echeverri J. D., Romero D., & Salamanca C. H. (2019). An evaluation of the physicochemical properties of stabilized oil-in-water emulsions using different cationic surfactant blends for potential use in the cosmetic industry. Cosmetics, 6(1), 12.
- 4. Lothongkum A. W., Phaiboonsilpa N., Seangkiatiyuth K., Tanprasert P., & Rojdamrongkarn S. (2006). Significant Parameters on the Deviation of Hair Conditioner Viscosity: Part I. Regression Analysis
- by the Minitab Program. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 6(2b), 599-606.
- 5. Roso A., & Brinet R. (2004). Rheology and texture analysis used together to improve raw material choices. Cosmetics and toiletries, 119(6), 53-60.